

Level-0 Calorimeter and L1 Global Triggers WBS 6.8.y.1 and 6.8.y.3

Wade Fisher

Michigan State University

U.S. ATLAS HL-LHC Upgrade NSF Conceptual Design Review

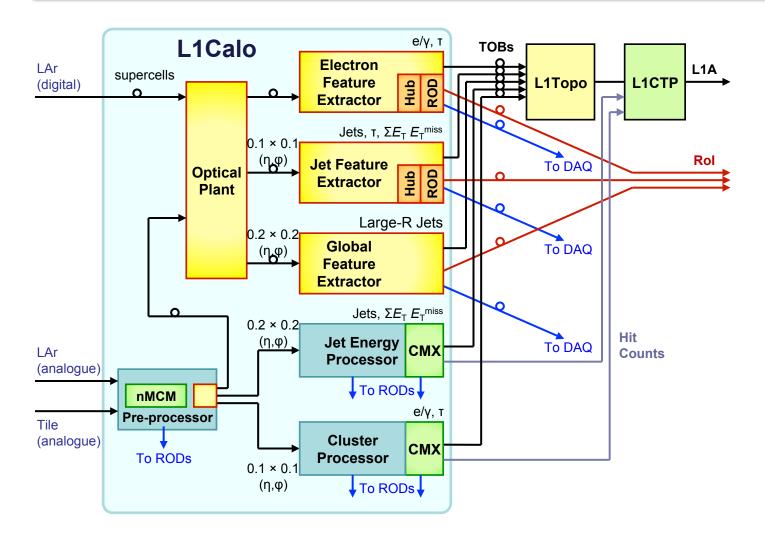
Arlington, VA March 8-10, 2016

Outline

- System experts and Principle Investigators
- System Overview
 - Current (Run-2) System, Phase-1 upgrade and Motivation for Upgrade
 - ATLAS Upgrade Plans
- Proposed U.S. HL-LHC Upgrade Scope
 - Work Breakdown Structure and Contributing Institutes
 - U.S. Deliverables
- Ongoing R&D
 - Plans to Construction Project
 - Funding Needed
- Construction Project Management
 - Construction Project Budget and Schedule
 - Risk, Contingency, and Quality Assurance
- Closing Remarks

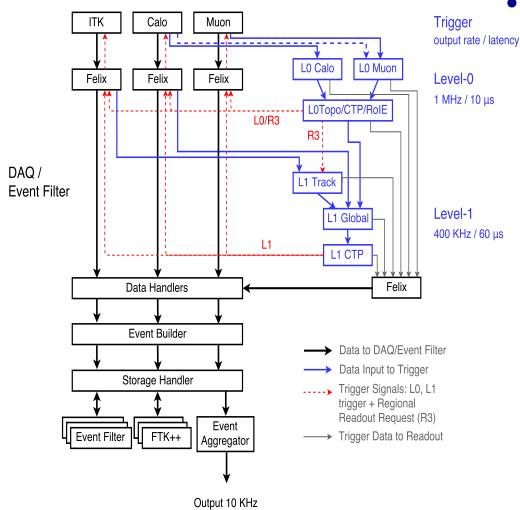
About the Expert

- Wade Fisher, Associate Professor, Michigan State University
 - Member of ATLAS collaboration and TDAQ group since 2012
 - L3 manager for Phase 1 upgrade project: FEX ATCA Hub module
 - MSU also built and commissioned Phase 0 upgrade L1Calo module:
 Common Merger Module Extended (CMX)
 - Engineers Dan Edmunds, Philippe Laurens, Yuri Ermoline, Pawel Plucinski
- Additional Primary Contributions
 - Sizable list of TDAQ experts with significant upgrade experience
 - L0 Calo: Reinhard Schwienhorst (MSU), Hal Evans (Indiana)
 - L1 Global: WF (MSU), Stephanie Majewski (Oregon), Elliot Lipeles (Penn),



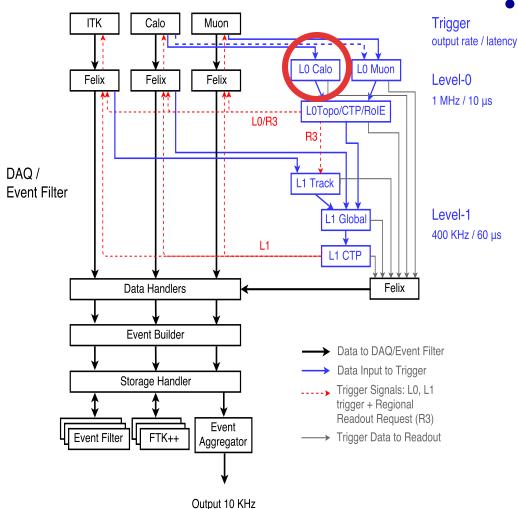
About the Institutes

- Michigan State University
 - Member of ATLAS since beginning of US participation
 - Long history of trigger construction projects and strong EE team
 - Engineers Dan Edmunds, Philippe Laurens, Yuri Ermoline, Pawel Plucinski
- Oregon
- Indiana



Phase 1 Upgrade Overview

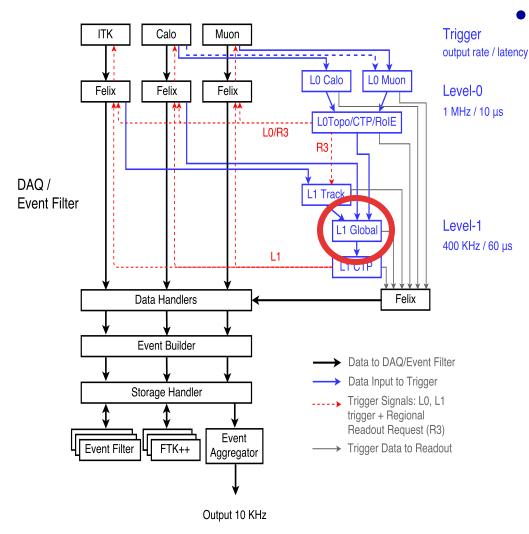
HL-LHC System Upgrade Plans



Two-level hardware system

- Phase-1 L1 system becomes HL-LHC L0 system
- High precision Muons (MDT) added to L0 system → improves efficiency
- L0 Rate is now 1 MHz
 - Allows in more physics
- L1 system uses tracks and full granularity calo in regions of interest to improve reject before HLT
 - Tracking 10% of data at 1 MHz
- Full detector tracking for 100 KHz events in HLT → mitigates pile-up for hadronic triggers

HL-LHC System Upgrade Plans



Level-0 Calorimeter Trigger

- Phase-1 L1 system becomes HL-LHC L0 system
- Tile input to LOCalo will be new digital input from Tile preprocessor
- New Tile Optical Plant needed for new Tile front-end electronics mapping / interface
- gFEX firmware needs to be upgraded for
 - New Tile inputs,
 - Modified algorithms for higher pileup/new inputs
 - New output requirements for LOTopo and DAQ

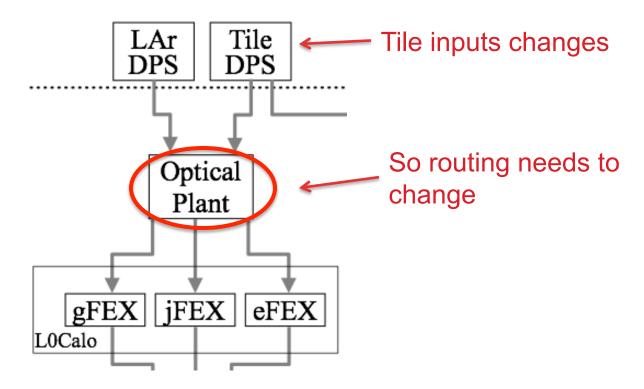
HL-LHC System Upgrade Plans

Level-1 Global Trigger

- L1 Global system aggregates inputs from Calo, Muon and Track triggers
- Processes fine-granularity calorimeter inputs for improved siganatures
- Evaluates combined trigger algorithms using 'global' information
- Proposed NSF scope focuses on current US hadronic trigger experience to support processor algorithm design
 - Energy clustering and jet identification
 - Global calorimeter quantities (MET, HT)
 - Track-based pileup rejection

Proposed NSF Scope

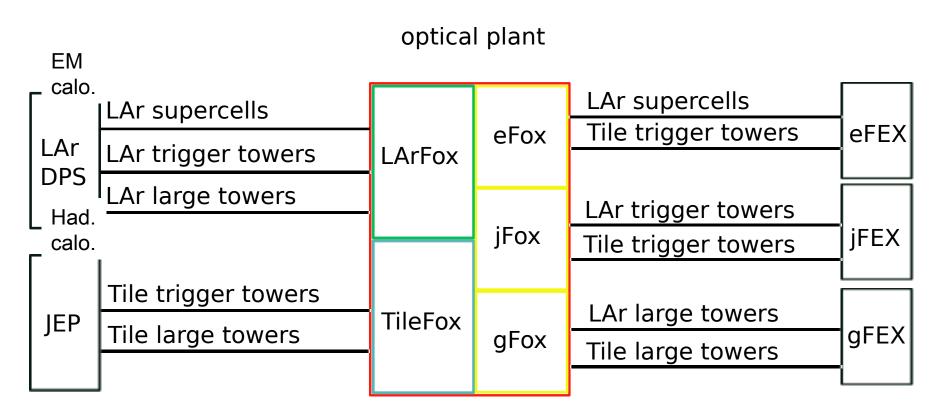
- 6.8.y.1 L0 Calo
 - Rebuild fiber optic input router because of changes to tile inputs
 - MSU is building Phase-1 system this capitalizes on their unique expertise
 - Institutes: Michigan State (MSU)
- 6.8.y.3 L1 Global Processing
 - L1 Global algorithms are where the rate reduction from 1 MHz to 400 KHz happens
 - 4 firmware algorithms focused on hadronic triggering:
 - Offline-like energy clustering and jet construction, global quantities (MET, HT), and track-based pile-up rejection
 - This builds on US experience with Phase-1 "gFEX" system which does global hadronic triggering in what will be L0
 - Institutes: U Chicago, U Indiana, Louisiana Tech, Michigan State, U Oregon,
 U Pittsburgh



6.8.y.1: L0 Calo Fiber Optic Plant

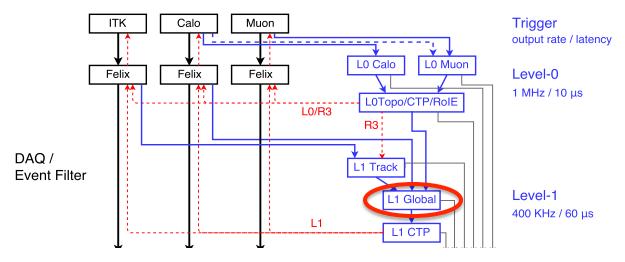
 Rebuild the Phase-1 Fiber Optic plant to accommodate the change to the tile electronics

Builds on unique MSU experience with fiber routing and


splitting

FOX – Fiberplant

- Phase-1 Deliverable: Fiber-Optic eXchange
 - Project underway at MSU
 - Well-understood technical challenges


Version-1 Optical Fiber Plant

6.8.y.3: L1 Global Processing

- Deliverable is firmware that runs on the L1 Global Processor
 - The focus is on hadronic triggering with 4 related items
 - Offline-like "topological clustering" of calorimeter energy
 - Offline-like jet finding
 - Global quantities: Missing energy, sum of jet pTs (HT), and MHT
 - Track-based pile-up rejection for multijet and global quantities
- Follows Phase-1 experience with the gFEX system
 - gFEX is global quantities and fat-jets at what will be LO in HL-LHC

Ongoing R&D Efforts

- R&D Efforts underway using pre-MREFC funding
- 6.8.y.1: LOCalo Optical Plant
 - Phase-1 L1Calo optical plant R&D effort eliminates need for dedicated Phase-2 R&D effort.
 - Highly similar design to be implemented by the same PI/engineers
- 6.8.y.3: L1Global Algorithms
 - Current experiences with Phase-1 gFEX algorithm development useful
 - Studies of global quantities, jet substructure, large-R jet pileup subtraction
 - Dedicated R&D studies of topological clustering algorithms underway
 - Characterizing clustering algorithm limitations on FPGA targets
 - Latency/resource/resolution studies help guide hardware and algorithm choices
 - Same engineers expected to contribute to Phase-2 efforts

Budget Estimation

- WBS 6.8.y.1: LOCalo Optical Plant
 - Primarily based on current Phase-1 Fiber Optic Exchange module
 - Well-understood technical scope and costs
 - Phase-1 experiences will reduce overall risk to both schedule and cost
- WBS 6.8.y.3: L1Global Firmware Algorithms
 - Based on current Phase-1 gFEX algorithm development
 - L1Calo gFEX module: Global Feature Extractor
 - Similar level of complexity and schedule demands
 - Expert-level estimation for anticipated differences wrt gFEX

Risks (To be updated)

General sources of risk

- Changes or delays in system definition
- Changes or delays in interfaces with other sub-systems
- Performance of available FPGAs or other processors different than expected
- Off project physicist effort is insufficient

Mitigation

- In general, mitigation is system specific
- In some cases, development can continue even when system definitions are not complete
- Performance issues can be handled by reducing target efficiencies if necessary
- Off project manpower issues can be addressed by expanding the range of collaborators (in US and out)

Closing Remarks

- US Deliverables
 - 6.8.y.1 LO Calo fiber optic plant for new tile output
 - 6.8.y.3 L1 Global Processing algorithms for hadronic objects
- This package with have a high impact on the ability of ATLAS to maintain low threshold single lepton and hadronic triggers
- Budget and Planning are based on Phase-1 experience

Backup